CONDENSATE-FEEDWATER-BOILER SYSTEM ON-LINE ANALYZERS

On-Line Analyzer	Sample Point	Alarm Points	Comments
рН	 L.P. Heaters H.P. Heaters Boilers 	FeedwaterLow9.3 HighBoilersLow8.7 High9.7	Feedwater pH controlled by Morpholine addition (added at condensate polisher discharge when polishers are in service). Optimum pH range for magnetite preservation and carbon steel corrosion. Boiler pH controlled by feedwater pH and by phosphate addition.
Cation Conductivity	 Condensate Extraction Pump H.P. Heater Outlet Outlet of Polisher Vessels Condenser Hotwells 	Cond/Feedwater High 0.1 mS/m Polishers High 0.04 mS/m	Used to detect low concentrations of anions (e.g., chloride, sulfate). Salts converted to acids. Chemicals added for corrosion control removed (morpholine, hydrazine). Condensers tube leaks Polishers exhausted resin (anions coming off the resin). Feedwater low concentrations of anions in the feedwater
Specific Conductivity	 Outlet of Polisher Vessels Boiler B/D Composite 	Conductivity will depend upon chemical feed concentration in the cond/feedwater (morpholine & hydrazine). Boiler B/D conductivity will depend upon phosphate dosage in the boilers and also the cond/feedwater morpholine & hydrazine concentrations.	Specific Conductivity is a measure of the total ionic concentration in the water. Used to give an indication of the concentration of treatment chemical concentration in the condensate/feedwater and steam generators (morpholine, hydrazine and phosphate).
Dissolved Oxygen	 L.P. Heater Outlet H.P. Heater Outlet 	L.P. Heater Outlet High 0.050 mg/Kg H.P. Heater Outlet High 0.010 mg/Kg	Most corrosive impurity in the condensate-feedwater- boiler system. Controlled by condenser air extraction, hydrazine addition and the D/A.

CONDENSATE-FEEDWATER-BOILER SYSTEM ON-LINE ANALYZERS

On-Line Analyzer	Sample Point	Ala	rm Points	Comments
Hydrazine	 L.P. Heater Outlet Heater Outlet 	L.P. Heater Outlet	Low 0.060 mg/Kg High 0.080 mg/Kg	Residual maintained in order to ensure complete dissolved oxygen removal.
		H.P. Heater Outlet	Low 0.060 mg/Kg High 0.080 mg/Kg	Too high a hydrazine concentration can result in increased corrosion of the carbon steel piping (loss of magnetite layer).
Sodium	 Condenser Hotwells Polisher Service Vessels 	Condenser Hotwells	High 0.005 mg/Kg	Indication of condenser tube leaks
	 a. Main CEP discharge 	Main CEP Discharge	High 0.005 mg/Kg	Sodium coming off the polisher service vessels would indicate cation resin exhaustion.
		Pol Service Vessels	High 0.002 mg/Kg	
Gross Gamma	1. Boiler B/D Composite	B/D Composite	High 250 cps	Indication of boiler tube leaks. PHT water entering the boiler water. Gives an indication of gross gamma activity in the boiler water.
Tritium	1. Boiler Steams	Boiler Steams	High 1.85E6 Bq/Kg	Indication of boiler tube leaks. PHT water entering the boiler water.
D ₂ O	1. Boiler Steams	Boiler Steams	High 160 mg/Kg	Indication of boiler tube leaks. PHT water entering the boiler water. Not as fast an indication as boiler steam tritium's for detection of boiler tube leaks.

NUCLEAR SYSTEMS

System	Main Parameters Monitored	Chemistry Specifications			Comments
	рН	рН	4.5 -7.0	рН	Maintained neutral to slightly acidic for reactivity concerns (gadolinium precipitation occurs at pH values of 7.0 and higher).
Main Moderator System	Specific Conductivity Dissolved D ₂	Specific Conductivity Dissolved D ₂	< 0.10 mS/m < 13.0 ml/Kg	Specific Conductivity	Maintained as low as possible. Indication of the presence of impurities (or the presence of gadolinium). Increased conductivity will result in increased $D_2 \& O_2$ production in the water which will then find its way into the cover gas.
	Chloride Nitrate	Chloride Nitrate	< 0.20 mg/Kg < 0.10 mg/Kg	Dissolved D ₂	Monitored to prevent high concentrations of D_2 from entering the cover gas. Increased D_2 in the water indicates the presence of impurities in the system. The dissolved D_2 will increase when
	Boron	Boron		pulling	Gd following a poison outage.
	Gadolinium	Gadolinium		Chlorides	Promotes Stress Corrosion Cracking of Stainless Steels. Possible sources Spent ion exchange resin or impure make-up water.
	%D2O Cover Gas %D2, O2 & N2	%D ₂ O %D ₂ %O ₂	> 99.75% < 4% < 2%	Nitrates	Increased nitrate concentration in the water will result in increased production of $D_2 \& O_2$. Its presence can be the result of poison addition (gadolinium) to the moderator water, exhausted ion exchange resin or it can also be caused by the presence of N_2 in the cover gas.
		%N ₂	< 2%	Boron	Boron addition no or little effect on D_2/O_2 production. Long term reactivity control slow burnup rate. Difficult to remove by IX columns.
				Gadolinium	High neutron cross-section small concentration required fro reactor shut-down. Fast burn-up rate about the same as
				Xe-135	used for Xe-135 simulation after start-up. Easily removed by IX columns (each column has enough capacity to remove Gd resulting from 2 LISS firings.
				% D ₂ O	Maintain high purity for efficient fuel burn-up. Also the % D_2O must remain high in order for the reactor to remain critical. 0.25 % downgrading will more than double the neutron cross-section of the moderator water. 1% downgrading will result in insertion of about 31.2 mK of negative reactivity (impossible to go critical at this value).

System	Main Parameters Monitored	Chemistry Specifications		Comments
			% D ₂ , O ₂ , N ₂	Levels of D_2 and O_2 monitored to ensure that explosive concentrations are not reached.
Main Moderator System				A slight excess of O_2 is maintained in the cover gas to recombine with the D_2 the cover gas. Recombined to form D_2O in the recombiners.
				Nitrogen is not normally present in the cover gas. Its presence would indicate air inleakage (or impure helium make-up) into the system.

NUCLEAR SYSTEMS

System	Main Parameters Monitored	Chemistry Specifications			Comments
Primary Heat Transport System	pH Specific Conductivity	pH Specific Conductivity	10.2 - 10.8 1.4 - 3.5 mS/m	рН	Minimum carbon steel corrosion in this pH range. Corrosion rates increase at pH values above and below this optimum. pH adjusted by the addition of Lithium Hydroxide. Maintained by Li based ion exchange resin.
	Lithium Dissolved Oxygen	Lithium Dissolved O ₂	0.5 - 2.0 ppm 10 ppb	pH, Lithium & Specific Conductivity	Each of these parameters are related to one another. A given lithium concentration will correspond to a given system pH and specific
	Dissolved D ₂ Chloride	Dissolved D ₂ Chloride	3.0 - 10 ml/Kg < 0.10 mg/Kg	the Dissolved O ₂	 conductivity. Deviations from this relationship would indicate presence of impurities. Dissolved O₂ must be maintained low as the corrosion rate of carbon
	Fission Products (!-131) % D ₂ O	I-131 % D ₂ O	< 500 MBq/L > 97.5 %	Dissolved D ₂	 steel will greatly accelerate in its presence. Maintained low by H₂ addition to the system see below. H₂ added to the system to maintain dissolved D₂ in proper range.
	$%\mathbf{D}_2, \mathbf{O}_2 \& \mathbf{N}_2$	%D ₂ O ₂	4% 1%	radiolysis.	Added to the system in order to suppress O_2 formation via Too much could induce hydriding of the pressure tubes (imbrittlement).
		N ₂	6%	Chloride	Stress Corrosion Cracking .

Primary Heat Transport System Continued

System	Main Parameters Monitored	Chemistry Specifications		Comments
Primary Heat Transport System			I-131	I-131 concentration is maintained ALARA in the PHT system. Gives an indication of fuel failures. Controlled by removal of defective fuel from the system and by maintaining flow rate through the purification circuit. If I-131 concentration reaches 500 MBq/Kg, reactor shut- down must be initiated.
			% D ₂ O	Less efficient fuel burn-up as the isotopic decreases. Isotopic not as critical in this system as it is in the Main Moderator System. A decrease in the HTS isotopic down to 95% would result in about 5 mK of negative reactivity.
			%D ₂ , O ₂ , N ₂ D ₂ O.	 Levels of D₂ & O₂ maintained low to ensure explosive concentrations of these gases are not reached. The presence of N₂ would indicate air inleakage. The presence of N₂ in the cover gas would result in the formation of nitrates and nitric acid in the PHT water. This places an extra load on the PHT IX columns as well as increases the radiolytic breakdown of the

System	Main Parameters Monitored	Chemistry Spec	ifications		Comments
	Dewpoint	Dewpoint	-10° C	Dewpoint	Detection of leaks from a pressure tube, calandria tube or from the end shield cooling. Under normal conditions (no leaks), a small amount
Annulus Gas System	Gamma Nuclides	D_2	1000 uL/L		of D_2 will diffuse through the pressure tubes into the annulus gas (D_2 from the PHT system). This D_2 will react with the CO ₂ (annulus gas)
Timulus Gus System	D ₂	O ₂	0.5%		to form carbon monoxide and D_2O . Over time the D_2O concentration in the annulus gas will slowly increase. This increase in D_2O
	O ₂	N_2	no spec. Indication of air		concentration will result in an increase in the dewpoint. When the dewpoint specification is reached, the system is purged with
	N_2		in leakage.	fresh	CO ₂ .
	Tritium	Gamma Nuclides	no spec.	D ₂	System is purged with fresh CO_2 if high levels of D_2 are detected. High D_2 concentrations may cause hydriding of the Zirconium
		Indication of PHT in leakage.		tubes.	
		Tritium	no spec. Indication of	O ₂	High concentration of O_2 indicate air in leakage. System is purged with fresh CO_2 when high levels of O_2 are detected.
			PHT in leakage.		<u>NOTE</u> : It is advantageous to maintain low levels of O_2 in the annulus gas system. Low levels of O_2 are necessary to maintain and replenish the oxide layer on the outer surface of
					the pressure tubes. This oxide layer is to maintained on the
					outside of the pressure tubes in order to prevent tube corrosion (impermeable layer prevents D_2 pickup by the tubes hydriding).

NUCLEAR AUXILIARY SYSTEMS

NUCLEAR AUXILIARY SYSTEMS

System	Main Parameters Monitored	Chemistry Specifications		Comments
Shield Cooling System	pH Specific Conductivity Lithium Chloride % H ₂ % O ₂	pH Specific Conductivity Lithium Chloride % H ₂ % O ₂	10.0 - 10.5 2.5 - 7.5 mS/m 1.0 - 2.2 mg/Kg 2.0 mg/Kg (max.) 4.0 % 2.0 %	 The objective of Shield Cooling chemistry is to minimize corrosion of system components and to remove activated products from the system. The main structural materials of the shield cooling system is carbon steel. Thus a high pH is maintained in order to maintain the magnetite layer and to minimize corrosion. A correlation exists between pH, Lithium concentration and Conductivity. Any deviation from this theoretical correlation would indicate the presence of impurities in the system. Cover gas % H₂ & O₂ concentrations are maintained below explosive concentrations by purging the cover gas with fresh nitrogen. If the system is to be shutdown for an extended period of time (> 30 days), hydrazine would be added to the water in order to remove dissolved O₂ and to maintain the magnetite layer on the carbon steel components.

% N2of this ion in contact with stainless steels. Fluoride ion is corrosive to the zircoly-2 alloy. $%$ O22.0 %	System	Main Parameters Monitored	Chemistry Specif	ications	Comments
% N22.0 %Recombination Units and system purging with fresh Helium maintains the H2 & O2 below explosive concentrations.	1	pH Specific Conductivity Chloride % H ₂ % O ₂	Specific Conductivity Chloride Fluoride % H ₂ % O ₂	0.30 mS/m (max.) 0.3 mg/Kg (max.) 0.1 mg/Kg (max.) 4.0 % 2.0 %	 minimize corrosion of components minimize radiolysis of the water maintain reactivity worth of the zones (impurities will absorb neutrons thereby creating errors in the known worth of the zones). System is mainly stainless steel and Zircoly-2 alloy. A neutral pH is maintained. Chlorides are maintained ALARA due to the stress corrosion cracking that is caused by the presence of this ion in contact with stainless steels. Fluoride ion is corrosive to the zircoly-2 alloy. Recombination Units and system purging with fresh Helium maintains the H₂ & O₂ below explosive